

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

PPG, OI, Alcoa, Leadbetter, MTU & PNNL

June 22, 2004

Project Summary

Goal: Integrate advanced thermoelectric materials into thermoelectric power generation device with efficiency >20% for waste heat recovery in industrial processes.

Challenge: Multi-layered, thin-film materials show promise for thermoelectric performance but economical scalability is required

Benefits: Recovery of energy from industrial waste heat stacks; conversion of waste heat into electrical power; energy savings of 1.6 trillion Btu/year in 2020.

FY05 Activities: Evaluate new materials and multilayer concepts; incorporate materials into prototype power generating device; fabricate and demonstrate 1 kW device.

Hot side ("Waste Heat")

Cold side

Barrier-Pathway Approach

Barriers

- Low energy efficiency furnaces due to heat loss
- □ Need for large scale production of high efficiency TE materials

Pathways

- □ Development of thin film thermoelectric materials
- □ Design of retrofitTE generators for implementation in waste heat stacks
- Cost / location
 trade-off studies for
 deployment of TE
 technology

Critical Metrics

- □ TE Figure of merit ZT > 3
- □ Electrical powerproduced from waste heatat a cost < 1 ¢ / kW-hr
- □ By 2020:
 - Energy Savings of 135 Trillion Btu
 - Cost Savings for of \$ 980 Million
 - Carbon reduction of 0.4 MMTCe

Team Members

- □ PPG Industries
 - TEG in-situ device testing
 - Emission measurements
 - Combustion optimization
 - Process integration
 - Trade-off studies
- □ PNNL
 - TE materials development
 - Heat flow modeling
 - TEG device development and testing
 - Trade-off studies
- ► Alcoa
 - TEG in-situ device testing
 - Process integration

- TEG in-situ device testing
- Process integration
- ☐ A. C. Leadbetter & Sons, Inc.
 - TE materials development
 - Heat flow modeling
 - TEG device development and testing
- Michigan TechnologicalUniversity
 - Heat flow modeling
 - TEG device development

Thermoelectric Generators for Waste Heat Recovery

- □ Large Quantities of Thermal Energy are Available From Waste Energy Streams
- □ Generation of Electrical Power with Therrmoelectrics Will Involve <u>Placing TE Arrays on the Sides</u> of Waste Energy Ducts
- □ Key TE Material Challenges:
 - Increase TE Efficiency
 - Scale-Up Fabrication
 Process to Reduce Cost

Potential of Thin Films

Conversion Efficiency (%)

Figure of Merit (ZT)

TEG System Components

- □ Heat Exchanger Coupled to Waste Heat Source
- □ TEG Module
- □ Cold Side Heat Exchanger

TEG System Design

HX/TEG design Leadbetter, PNNL

TE materials
HX fabrication
Leadbetter,PNNL

TEG test module PPG, Alcoa, OI, PNNL

Program Plan

	<u>Tasks</u>	FY04	FY05	FY06	FY07
1.	Design Energy Conversion System	Eco	Current PNNL Matls Anomic Analysis	_	ed Materials e Economic vsis
2.	Advanced Large Scale TE Materials Development		ZT > 3 Sca Advanced Matls	le-Up ZT > 4	Scale-Up_A ZT > 5
3.	TE Generator Fabrication & Testing	Ве	% Demonstration nch Test at PNNE with Slip Stream A		% Demonstration
4.	Combustion Emission Optimization		·	of Particulate De Heat Transfer	position And

Task Descriptions

Task 1 - Design of Energy Conversion System

- Heat transfer analysis at hot and cold surfaces
- Electrical power characteristics of TE arrays

Task 2 - Advanced Large Scale TE Materials Development

- Optimize process for current PNNL materials to achieve ZT >3
- Investigate advanced materials to achieve larger values of ZT
- Develop approaches to for scale-up of deposition processes

Task 3 - TE Generator Fabrication & Testing

 Work with Industrial partners to design systems for bench top testing at PNNL and testing at industry sites

Task 4 - Combustion Emission Optimization

- Interact with Industrial partners to determine particulate deposition
- Model effects of particulates on heat transfer characteristics

Progress for FY04

- □ Kick-Off Meeting held at PPG with representatives from all Industrial partners
- □ Interaction with industries initiated to define best locations for placement of a TE array, acquire information concerning exhaust gas composition and particulate densities
- ☐ Heat transfer modeling for system design initiated
- ☐ Thin film thermoelectric materials development concentrating on;
 - Si/SiGe Multilayer films
 - Boron-Carbide Films
 - Contact technology and TE array design

Planned Activity for FY05

- □ Optimize Process for Current PNNL Materials with ZT > 3
- □ Develop Scale-up Process for Current PNNL Materials
- ☐ Initiate development of Advanced TE Materials
- ☐ Fabricate Thermoelectric System for Bench Top Testing and Testing at Industrial Partners
- ☐ Produce Electrical Power from a Waste Stream with a 10 % Efficiency

Preliminary Concept for Waste Heat Conversion Test Bed

☐ Assumptions:

- Utilize Slip Stream from Oxy-Furnace-Gas at 2700°F
- Temperature at Hot Shoe 1160°F (900°K) with 1 cm Firebrick
- Using Water Cooling Cold Shoe at 73°F (300°K)
- ☐ Heat Flow into TE Modules: 1.3 W/cm²
- □ Four 1 meter x 10 cm TE
 Converters:
 520 Watts @ 10% Efficiency
 1040 Watts @ 20% Efficiency

Projected Cost Of Electrical Power From Waste Recovery

Case 1

Assumptions: - Preliminary Concept with 1.3 W/cm²

- TE Module Cost = \$ 1000/m²

- five Year Continuous Operation

- TE Conversion Efficiency = 20%

Estimated Cost of Electricity = $\frac{1 \frac{\phi}{kW-Hr}}{}$

Case 2

Assumptions: - Modification of Preliminary Concept

to Give 10 W/cm²

- TE Module Cost = \$ 1000/m²

- One Year Continuous Operation

- TE Conversion Efficiency = 20%

Estimated Cost of Electricity < 1 ¢/kW-Hr

Commercialization Pathway

- □ Development of Advanced TE Materials Which Convert
 Waste Heat to Electrical Power with an Efficiency of 20 %
- □ Demonstration of System at PPG and Other Industrial Partners That Produces 20 kW/m2 with an Efficiency of 20 %
- □ Establish Pilot Production Line at One or More of Industrial Partners for TE Module and System Fabrication
- ☐ As a Follow on Activity PNNL will Work with PPG Coating Groups to Develop in House Large Scale Coating Technology for TE fabrication.
- □Simultaneous Work with Battelle to Commercialize Technology.

CONCLUSIONS

- □ Research and Development Team Includes TE Materials **Developers and Process Industries**
- Design Studies for TE System for Bench Top Testing and Testing at Industries are Underway
- □ Development of Efficient Thin Film TE Materials Based on Si/SiGe and Boron Carbide Multilayers is Expected to Lead ZT Values > 3 -- Possible Efficiencies of 15% to 20%
- ☐ Three Year Program Should Provide Technology for Generating Power from Waste Heat with an Efficiency > 20 % and Electrical Power at a Rate < 1 ¢ / kW-Hr

